
CMSK Collision Mask File 
Specification V1.0

Revision 1 (28th May 2014)

This document is Copyright ©2014 by David Powell. This work may be
reproduced, in whole or in part, using any medium, including, but not

limited to, electronic transmission, CD-ROM, published in print, under the
condition that this copyright notice remains intact.

Introduction
CMSK files are for storing bitmap masks for pixel perfect collision detection. The most likely usage 
is for accurate collision detection in games.

This file format is much simpler than standard image formats such as PNG, so that implementing a 
file reader in a new programming language is quick and easy. The loading time should also be fast 
as processing time can be critical in gaming applications.

A simple data compression scheme is used which allows fast decompression, but due to the 
simplicity of mask data, a comparable compression ratio to other image formats is achieved.

Overview
The following table outlines the layout of CMSK file:

Byte offset Length (bytes) Information Description

0 10 Signature The CMSK signature, which is the sequence of 
bytes: [139,67,77,83,75,13,10,26,10,0]

10 4 Version 32-bit big endian integer containing the version 
number

14 4 Mask Data 
Offset

32-bit big endian integer containing the offset in the 
file that the mask data starts

18 4 Mask Data 
Length

32-bit big endian integer containing the length of 
the mask data

22 4 Width 32-bit big endian integer containing the width of the 
mask

26 4 Height 32-bit big endian integer containing the height of 
the mask

- - - Later versions may store data here

Read from 
Mask Data 
Offset

Read from 
Mask Data 
Length

Mask Data The mask data

- - - Later versions may store data here

Last 4 bytes 4 CRC-32 A CRC-32 checksum of the entire file to this point



Description
The different sections of a CMSK file are discussed below.

Signature

Offset: 0
Length: 10 bytes
The signature is a sequence of 10 bytes that identifies the file as a CMSK file.
The bytes should be as follows:
139 67 77 83 75 13 10 26 10 0

High bit 
set

C M S K Carriage 
Return

Newline Ctrl-Z Newline Null

File writers should output these bytes as the first 10 bytes of the file.

File readers should check that the first 10 bytes of the file match these bytes exactly. If the signature 
does not match, then either the file is not a CMSK file, or the file is corrupt.

Version

Offset: 10
Length: 4 bytes
The version bytes hold a 32-bit integer in big endian format.
This value holds the internal CMSK version number that the file claims to be compatible with.
For V1.0 files this should contain 0x00000001 (1).
New versions will increase this value by one for each new version. The internal version will always 
be a single integer, not a [major.minor] number, for example.

File writers should always output 0x00000001 (1) for the version.

File readers should check that the version is equal to 0x00000001 (1) before processing the rest of 
the file. Future versions are not guaranteed to be backwards compatible or super-sets of current 
versions. A reader should abort if the version is not explicitly supported.

Mask Data Offset

Offset: 14
Length: 4 bytes
The mask data offset bytes hold a 32-bit integer in big endian format.
This value is the offset within the file of the first byte of the Mask Data.

File writers should output the offset of the first byte of the Mask Data for this value. For example, a 
valid value could be 0x0000001E (30), as this is the first byte available after the fixed position 
values.

File readers should read this value and use it as an offset in the file of where to start reading the 
Mask Data from. A reader should not hard-code or assume any default value for the Mask Data 
Offset, as writers are free to choose any offset they require.



Mask Data Length

Offset: 18
Length: 4 bytes
The mask data length bytes hold a 32-bit integer in big endian format.
This value is the length in bytes of the Mask Data.

File writers should output the length in bytes of the Mask Data for this value.

File readers should read this value and use it as the maximum length when parsing the Mask Data. 
A reader should not hard-code or assume any default value for the Mask Data Length as the data is 
compressed and so the length will vary.

Width

Offset: 22
Length: 4 bytes
The width bytes hold a 32-bit integer in big endian format.
This value is the width in pixels (currently also bytes) of the decompressed mask data.

File writers should output the width of the mask in pixels for this value.

File readers should read this value and store it as the width of the mask.

Height

Offset: 26
Length: 4 bytes
The height bytes hold a 32-bit integer in big endian format.
This value is the height in pixels (currently also bytes) of the decompressed mask data.

File writers should output the height of the mask in pixels for this value.

File readers should read this value and store it as the height of the mask.



Mask Data

Offset: Read from Mask Data Offset
Length: Read from Mask Data Length
The mask data bytes holds the Run Length Encoded (RLE) compressed mask data.

The data is compressed on a per-byte basis.

The RLE method employed does not use a specific escape byte value and instead uses a double byte 
to represent an escape. This way single bytes are encoded verbatim, while any repeated bytes are 
encoded as a double byte followed by a length. As the maximum value for a byte is 255, any runs 
longer than 255 bytes will be divided into multiple encodings of 255 bytes followed by the 
remainder.

For example, the following bytes:
0 2 5 5 5 5 5 5 3 8

would be encoded as follows:
0 2 5 5 6 3 8 - - -

Single 
Value

Single 
Value

Double 
Escape

Double
Escape

Length 
of Run

Single 
Value

Single 
Value

The uncompressed mask data is a byte-per-pixel bitmap representing which areas should be classed 
as collisions and which areas should not. Each byte contains a value from 0 to 255.

Typically 0 should represent an empty section of the mask that a collision should not occur in, while 
255 should represent a solid section of the mask, that will cause a collision. It is recommended that 
values in-between (1-254) are subjected to a threshold value in the collision detection code that 
allows the user to choose the threshold at which a collision should occur.

The easiest way of creating a mask is to use the alpha channel from an image, as this will define the 
solid and empty areas of an object.

File writers should encode the mask data and output the compressed data for these bytes. The Mask 
Data Length value should be set to the length of the compressed data.

File readers should read these bytes and decompress the data. The length of the decompressed data 
will be exactly equal to the Width multiplied by the Height value.



CRC-32

Offset: Last 4 bytes of file
Length: 4 bytes
The CRC-32 bytes hold a 32-bit integer in big endian format.
This value is a checksum of the all the bytes in the file up to this point using the CRC-32 algorithm.

File writers should calculate and output a CRC-32 checksum for this value.

File readers may choose to calculate a CRC-32 checksum for the file (excluding the last 4 bytes) 
and verify that this value is correct. It is recommended that any readers that are not time critical take 
the time to verify the checksum so that corrupt files can be detected. Readers that are time critical 
(such as in games) are free to skip the CRC-32 verification in the name of speed.


	Introduction
	Overview
	Description

